Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry.

نویسندگان

  • Sigal Trattner
  • Bin Cheng
  • Radoslaw L Pieniazek
  • Udo Hoffmann
  • Pamela S Douglas
  • Andrew J Einstein
چکیده

PURPOSE Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. METHODS The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen-pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. RESULTS Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. CONCLUSIONS Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Dose Measurements on an Indigenously Made Inhomogeneous Female Pelvic Phantom Using Metal-Oxide-Semiconductor-Field-Effect-Transistor Based Dosimetric System

Introduction: Megavoltage X-ray beams are used to treat cervix cancer due to their skin-sparing effect. Preferably, the radiation surface doses should be negligible; however, it increases due to electron contamination produced by various field parameters. Therefore, it is essential to provide proper knowledge about the effect of different field parameters on radiation doses. This study sought t...

متن کامل

A Novel Approach for Effective Dose Measurements in Dual-energy Ct.

A novel method was presented for the effective dose (ED) measurement with metal-oxide-semiconductor field-effect transistor (MOSFET) detectors in dual-energy (DE) dual-source (DS) computed tomography (CT) scanner. This study demonstrated that the mean energy of the combined spectrum in dual-source computed tomography can be used to measure the ED. For validation, the MOSFET dose at the centre c...

متن کامل

Megavoltage cone beam CT near surface dose measurements: potential implications for breast radiotherapy.

PURPOSE Cone beam computed tomography (CBCT) is fast becoming standard on modern linear accelerators. CBCT increases the dose to regions within and outside the treatment field, potentially increasing secondary cancer induction and toxicity. This study quantified megavoltage (MV) CBCT skin dose and compared it to skin dose delivered during standard tangential breast radiotherapy. METHOD Dosime...

متن کامل

Radiation therapy treatment unit dose-rate effects on metal–oxide–semiconductor field-effect transistor (MOSFET) detectors

Metal oxide semiconductor field effect transistor (MOSFET) detectors have recently been introduced to radiation therapy. However, the response of these detectors is known to vary with dose rate. Therefore, it is important to evaluate how much variation between the treatment prescribed dose and the dose that is actually delivered to the patient using high-energy photon or electron beams under co...

متن کامل

In Vivo Dosimetry of an Anthropomorphic Phantom Using the RADPOS for Proton Beam Therapy

The radiation positioning system (RADPOS) combines an electromagnetic positioning sensor with metal oxide semiconductor field-effect transistor (MOSFET) dosimetry, enabling simultaneous online measurement of dose and spatial position. Evaluation points can be determined with the RADPOS. The accuracy of in-vivo proton dosimetry was evaluated using the RADPOS and an anthropomorphic head and neck ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2014